

Journal of Alloys and Compounds 446-447 (2007) 290-295

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

NMR studies of the aluminum hydride phases and their stabilities

Son-Jong Hwang^{a,*}, R.C. Bowman Jr.^b, Jason Graetz^c, J.J. Reilly^c, W. Langley^d, C.M. Jensen^d

^a The Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA

^b Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

^c Brookhaven National Laboratory, Department of Energy Sciences and Technology, Upton, NY 11973, USA

^d Department of Chemistry, University of Hawaii, Honolulu, HI 96822, USA

Received 27 October 2006; received in revised form 11 January 2007; accepted 11 January 2007 Available online 28 January 2007

Abstract

Multinuclear and multidimensional solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH₃ samples. At least three distinct polymorphic AlH₃ phases have been prepared by desolvating the alane etherate product from its organometallic synthesis. MAS-NMR spectra for the ¹H and ²⁷Al nuclei have been obtained on a variety of AlH₃ samples that include the β - and γ -phases as well as the α -phase. ²⁷Al MAS NMR was found to respond with high sensitivity for showing differences in spatial arrangements of AlH₆ octahedra in the three polymorphs studied. Based on the characteristic NMR signatures determined, phase transition of the γ -AlH₃ to the α -AlH₃ was studied at room and high temperatures. Direct decomposition of the γ -AlH₃ to aluminum metal at room temperature was also unambiguously confirmed by NMR studies.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Hydrogen storage materials; Gas-solid reactions; Nuclear resonances

1. Introduction

Aluminum hydride (AlH₃, alane) is a metastable solid with large hydrogen gravimetric ($\sim 10 \text{ wt\%}$) and volumetric $(0.148 \text{ kg H}_2/\text{L})$ capacities. Because of its high potential as a hydrogen fuel carrier for automotive applications, there have recently been considerable interests in understanding and development of the material. Recently, various alane phases (e.g., α , β , and γ) were freshly prepared, characterized [1–4], and thermodynamics were determined [2,5]. Enhanced kinetics in thermal decomposition of AlH₃ was observed by Sandrock et al. [6,7] when dopants (e.g., LiH, Ti) were incorporated or particle sizes were varied. More importantly a number of structural studies of alane phases have appeared. There was a report on NMR characterization of three different AlH₃ phases by Hwang et al. [8] identifying distinctive Al sites depending on polymorphs, and very recently crystal structures of α' , β , and γ phases in deuteride forms (AlD₃) were reported by Brinks et al. [9–11] and

0925-8388/\$ – see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2007.01.115

by Yartys et al. [12]. Since the original organometallic synthesis of α and 6 other polymorphs by Brower et al. [13], the α -AlH₃ phase was, until recently, the only phase with a known complete crystal structure [14], implicating the remarkable advances being made in short period of time.

In this work, we present a brief overview of high resolution NMR studies on the structures and thermal stabilities of AlH₃ polymorphs (α , β , and γ phases). In the literature, solid state NMR studies of pure AlH₃ material were reported by Zogal et al. [15,16] who used α -AlH₃ material originally produced at Dow Chemical to measure ²⁷Al quadrupolar coupling constant and observe molecular hydrogen (H₂) that they attributed to being adsorbed on the hydride particle surfaces from a sharp line of ¹H static NMR seen at temperature as low as 10 K. Tarasov et al. [4] more recently used ²⁷Al static NMR to explore formation of Al metal [Al(M)] during thermal decomposition of AlH₃ and AlD₃ reporting the kinetics for temperatures between 360 K and 400 K, and giving an activation energy. Although there is a lack of high resolution studies of pure AlH₃ except our recent work [8], use of high resolution NMR methods has been successful in addressing structures and chemical transformation of complex metal hydride systems [17–19].

^{*} Corresponding author. Tel.: +1 626 395 2323; fax: +1 626 568 8743. *E-mail address:* sonjong@cheme.caltech.edu (S.-J. Hwang).

Table 1 AlH₃ samples used for the NMR experiments

Sample description	ID code
α-AlH ₃	BNL-H2963
α-AlH ₃	Dow
α-AlH ₃	UTRC
γ -AlH ₃	BNL-H2990, BNL-H3013
γ -AlD ₃	UH-3
α , β , γ -mixed	BNL-H2961

The magic angle spinning (MAS) NMR of AlH₃ for ²⁷Al nucleus (I=5/2) with high power ¹H decoupling in general yields well resolved ²⁷Al signal of which isotropic chemical shift (δ_{iso}) and quadrupolar coupling parameters (C_0 , η , where $C_{\rm Q}$ is the quadrupolar coupling constant and η is the asymmetry parameter) become distinctive signatures for different polymorphs of AlH₃ [8]. The fact that Al is positioned in the center of a symmetric AlH₆ octahedron (for all three α , β , γ polymorphs) [9,10,13,14] results in weak contribution of quadrupolar coupling and consequently less broadened favorable NMR lineshapes. When more broadening is introduced due to higher quadrupolar effect, which is the case for the γ-AlH₃, two-dimensional (2D) multiple quantum (MQ) MAS technique [20,21] can be used to obtain spectra with improved resolution. Overall, NMR is sensitive enough to distinguish subtle differences originated from variations in arrangement of AlH₆octahedra in space: i.e., corner shared (α , β) versus edge shared (γ) . In addition, NMR was proven to provide separate signals for corner shared octahedra packed in different space groups (α versus β and one of the γ sites) [8]. Once these ²⁷Al spectral fingerprints are determined, NMR becomes a straightforward tool in exploring phase changes during hydrogen desorption processes of AlH₃ both at room and high temperatures. It is the aim of the current work to demonstrate how effectively NMR can be employed to study structure changes and kinetics during the thermal decomposition of both the old Dow and freshly made AlH₃ samples with differing phase compositions.

2. Experimental description

The alane (i.e., AlH₃) materials are from four sources: (1) originally manufactured by the Dow Chemical Company in the 1970s, (2) recently prepared at Brookhaven National Laboratory (BNL), (3) freshly prepared at University of Hawaii (UH), and passivated α -AlH₃ from an unspecified Russian source provided by United Technologies Research Center (UTRC) as listed in Table 1. The

general synthesis methods and procedures described by Brower et al. [13] were followed to make all alane materials as reported previously [1,2]. Powder X-ray diffraction was used to identify the initial phase compositions of the samples characterized by NMR. The Dow material was primarily the α -phase alane with 8.3 wt% hydrogen content that was virtually unchanged after ~30 years storage in air at ambient conditions. All initial NMR sample handling was performed in a glove box under an argon atmosphere. Later samples were exposed to air on purpose and examined for the build-up of oxide layers [22].

Solid state MAS NMR spectra were recorded using a Bruker Avance 500 MHz spectrometer with a wide bore 11.7 T magnet and employing a Bruker 4 mm CPMAS probe with extended variable temperature capability up to 300 °C. The spectral frequencies were 500.23 MHz for ¹H nucleus and 130.35 MHz for ²⁷Al nucleus. NMR shifts were reported in parts per million (ppm) when externally referenced to tetramethylsilane (TMS) and 1.0 M of Al(NO₃)₃ aqueous solution at 0 ppm for ¹H and ²⁷Al nuclei, respectively. The AlH₃ powder samples were packed into a 4 mm ZrO2 rotor after minimal additional grinding and were sealed with a tight fitting kel-F cap [8]. Sample spinning was performed using dry nitrogen gas. A typical ²⁷Al MAS NMR spectrum was obtained at a sample spinning rate of 14.5 kHz and after a 0.3 μ s single pulse (< $\pi/18$) with application of strong ¹H decoupling pulse of the two-pulse phase modulation (TPPM) scheme [23]. In situ variable temperature (VT) MAS NMR experiments on AlH₃ were performed at 8 kHz spinning rate using a ZrO₂ cap that allowed leaking of hydrogen gas desorbed at high temperatures. The MQ MAS experiment was performed using the z-filter method [24] at a spinning speed of 14 kHz and a two-dimensional (2D) spectrum was presented after a shearing transformation [21].

3. Results and discussion

3.1. ²⁷Al NMR of AlH₃ phases

The characteristic ²⁷Al NMR features are shown in Fig. 1 for three different AlH₃ phases. Pure α -AlH₃ phases show relatively well resolved static powder pattern arising from both satellite $(m = \pm 3/2 \leftrightarrow m \pm 1/2 \text{ and } m = \pm 5/2 \leftrightarrow m = \pm 3/2)$ and central transitions ($m = -l/2 \leftrightarrow m = +l/2$) of ²⁷Al (I = 5/2) nuclei at around ~ 0 ppm, representing six-coordinated Al in AlH₆ octahedron units which are all connected by corner-sharing in the 3D chain [14]. Its MAS spectrum under 14.5 kHz spinning significantly improves the resolution to yield a single line \sim 850 Hz wide at 5.5 ppm, which is \sim 5 times sharper than he static linewidth (4.5 kHz). In addition to the centerband, several spinning sidebands are also present with their intensity distribution expressing the shape of the static powder pattern. Analysis of both spectra using the QUASAR software [25] allowed us to extract NMR parameters (see Table 2). As expected, Al sitting in a symmetric octahedron experiences very little electric field gradient (efg) as indicated by a small $C_{\rm O}$ value (~250 kHz). Three

Table 2	
The quadrupole coupling parameters for ²⁷ Al spectra in AlH ₃ phases	

Sample	Code	$\delta_{\rm iso}~(\rm ppm)$	C _Q (MHz) ^a	η	Relative conc.
α-AlH ₃	BNL-H2963	5.8	0.25	0.1	1.0
γ-AlH ₃	BNL-H2990	γ-I: 10.9	2.9	0.58	1.0 ^b
		γ-II: 36.0	4.0	0.02	0.48 ^b
$\alpha + \beta + \gamma$ -AlH ₃	BNL-H2961	21.5 ^c	0.38 ^c	0.49 ^c (0.14)	$\alpha:\beta:\gamma-I:\gamma-II = 0.22:0.36:0.31:0.11$

^a The contribution of chemical shift anisotropy ($\Delta\delta_{CSA}$) was not taken into account in the current work. The estimated quadrupolar parameters need further refinements to provide more accurate values, which is currently in progress. For reference, a rough estimation [17] indicated that ²⁷Al NMR could show $\Delta\delta_{CSA}$ as large as 25 (±10) ppm for Li₃AlH₆ octahedron.

^b The intensity ratio was reported accidentally the opposite way in our previous report [8].

 $^{c}\,$ The parameters are for the $\beta\text{-AlH}_{3}$ phase.

Fig. 1. 27 Al NMR spectra and simulations: (a) static and under MAS at 14.5 kHz of α -AlH₃, (b) γ -AlH₃ under MAS at 14 kHz for a wide manifold of spinning sidebands and the centerband, (c) characterization of β -AlH₃, and (d) A 2D MQMAS spectrum of mixed phase (BNL-H2961).

different α -AlH₃ materials (see Table 1: Dow, BNL, UTRC) were examined with NMR in the present work. Although the centerband of ²⁷Al MAS signal are nearly discernable among three samples, the ²⁷Al static NMR powder patterns (not shown) and the corresponding spinning sideband pattern in MAS spectra showed noticeable differences that are associated with variations in crystallinity, the amount of surface oxide layers (Al₂O₃), and crystal sizes of materials.

The NMR characterization of γ -AlH₃ phase was performed using the same approach on a BNL material with relatively high purity for the γ phase. Later, NMR analysis indicated that the γ -AlH₃ material also contained ~9 wt% of the α -AlH₃ phase and ~4 wt% of LiAlH₄ with negligible amount of Al(M). Unlike the α phase, Fig. 1(b) shows two sets of wide manifold of spinning sidebands distributed over 6000 ppm. This is a typical NMR signature of quadrupole nucleus under moderate quadrupolar coupling and with high crystallinity. Spectral fitting using the QUASAR (see simulated manifold of spinning sidebands for γ -I and γ -II) disclosed the presence of two different sites (see the centerband in Fig. 1(b)) with intensity ratio γ -I: γ -II = 2:1 and with the significantly larger quadrupolar coupling constants (see Table 2) compared to that of AlH₆ octahedra in the α -phase. The presence of two crystallographically different AlH₆ sites with 2:1 ratio was also revealed by recent crystal structure determinations of the γ -AlH₃ (or γ -AlD₃) by Brinks et al. [10] and Yartys et al. [12]. The fact that two AlH₆ octahedral sites are distorted in bond angles (Al-H-Al) and distances due to the nature of spatial arrangement of corner-sharing $(Al(I)H_6)$ and edge-sharing $(Al(II)H_6)$ octahedra in the γ phase is completely consistent with higher values in the quadrupolar interactions of NMR spectra. These associations between our NMR parameters with the crystal structures have allowed us to assign the two sites based on the site occupancy, and the assignment is listed in Table 2. The corner-sharing Al(I)H₆ octahedra, γ -II site, show well-defined powder pattern of the central transition $(m = +1/2 \leftrightarrow m = -1/2)$ in the centerband (see Fig. 1(b)) due to the so called second order quadrupolar broadening. It is surprising since all cornershared AlH₆ octahedra in the α and β phases show narrow and symmetric lineshapes. This is better understood now thanks to crystal structure studies showing that the corner-sharing Al(I)H₆ octahedra in the γ phase is highly distorted because of bonding to edge-sharing Al(II)H₆ in two different ways both in the plane and axial positions of octahedra and containing a large Al–H–Al bond angle [10,12].

For the β-AlH₃ phase, ²⁷Al NMR determination was performed using a material (i.e., BNL-H2961) crystallized with mixture of three different phases, which were identified by their X-ray diffraction peaks. Fitting of the experimental ²⁷Al MAS spectrum employing previously determined NMR parameters for both α and γ phases allowed us to separate out a spectral component that is quite similar to that of the α phase with an exception of a downfield shift in the isotropic chemical shift (see the deconvolution in Fig. 1(c) and Table 2). According to Brinks et al. [9], the β -AlH₃ phase consists of all corner-shared AlH₆ octahedra with a single crystallographic Al site and with similar structural parameters to those of the α -phase, consistent with our NMR result. The change in the isotropic shift can be attributed to the difference in the connectivity of octahedra. The mixture phase $(\alpha + \beta + \gamma)$ showed in addition a relatively strong initial Al(M) peak (not shown) even for freshly prepared samples compared to the others, implying that degradation occurs at room temperature much more rapidly. Fig. 1(d) shows a 2D

MQMAS spectrum of the mixture phase with improved resolution, supporting our deconvolution of the one-dimensional (1D) spectrum. Note that the powder pattern seen for 1D MAS spectrum of the highly distorted γ -II site appears to be free from the second order broadening in the isotropic axis of 2D MQ MAS spectrum.

4. Decomposition studies of AlH₃ using NMR

²⁷Al NMR characterization in the previous section as well as ¹H and ²H MAS NMR of AlH₃/AlD₃ phases plays a valuable role in studying chemical transformation of various AlH₃ phases: AlH₃ \leftrightarrow Al(M) + 3/2H₂. Note that unlike the ²⁷Al NMR, ¹H or ²H MAS NMR in the solid AlH₃/AlD₃ phase did not provide distinctive signatures from different crystallographic sites. However, growth of sharp peaks at 4.4 ppm in ¹H or ²H NMR can provide an easy check of desorption of hydrogen or deuterium molecules from the solid phase [8]. The resulting signature in ²⁷Al NMR is a decrease of intensity for peaks from AlH₃ phases with simultaneous growth of the Al(M) peak at 1640 ppm. The measure of peak intensities in the ²⁷Al MAS NMR spectra in turn gives rise to a handy *in situ* kinetics study. Here in the

Fig. 2. (a) 27 Al MAS NMR spectra of γ -AlH₃ phase undergoing self-decomposition at room temperature. (b) Plot of fraction (ϕ) of γ -AlH₃, Al(M), and α -AlH₃ during the decomposition of the γ -AlH₃ sample, and plot of $[-\ln(1-\alpha)]$ vs. *t*, where α is the fractional decomposition of γ -AlH₃. (c) 27 Al MAS NMR spectra showing the 2nd and 3rd spinning sidebands at *t*=1h and 192 h, those of the α -AlH₃, and spectrum after subtraction of the α -AlH₃ from the spectrum at *t*=192 h. (d) 27 Al MAS NMR spectra obtained for decomposition of the γ -AlH₃ phase at high temperatures.

present work, we focus on showing a decomposition reaction of the γ -AlH₃ phase at room temperature. The most important issue in this study is to elucidate the decomposition pathway in addition to obtaining the rate, i.e., to determine possible phase transition from the γ phase to the α phase at room temperature, and possible direct decomposition of the γ phase.

Fig. 2(a) shows a series of ²⁷Al NMR spectra recorded at room temperature over the decomposition time period for the centerband (-20 to 50 ppm) and for Al(M) at 1640 ppm. From the integrated area of the γ -AlH₃ (γ -I and γ -II sites, *vide supra*) and forming Al(M) and α -AlH₃, mole fraction (ϕ) of each species was calculated and plotted as a function of time in Fig. 2(b). The decomposition kinetics of the γ -AlH₃ was analyzed by using the Avrami-Erofeev equation considering the reaction as an irreversible isothermal decomposition, as employed by Graetz et al. [1,2] who recently reported high temperature decomposition of α , β , γ -AlH₃ phases. A plot of $\ln[-\ln(1-\alpha)]$ versus $\ln(t)$, with α being the fractional decomposition, in the current study yielded a value of $n \sim 1$, and $[-\ln(1-\alpha)]$ versus t produced an acceptable liner plot as shown in Fig. 2(b). The result indicates that the rate determining step might be considered in the nucleation and growth model [26], and the growth dimension in this case could be one dimension unlike the previous cases found at high temperatures [1,2]. It is quite interesting because this finding could support that the gamma phase, which has a clear one-dimensional morphology in SEM images [27], actually decompose and nucleate Al in one dimension at low temperatures. The rate constant k obtained from $[-\ln(1-\alpha)]$ versus t plot was 5.8 (±0.2) × 10⁻⁷ s⁻¹, which is an order of magnitude smaller than that at 60 °C [1,2]. The γ -AlH₃ material (BNL-3013) used in this study was found to contain a similar level of contaminants to our previous y-AlH₃ material (H2990, see above), including α -AlH₃ (~7%). Recording of ²⁷Al NMR spectra was terminated when hydrogen pressure build-up led opening of the tight-sealing kel-F cap from the rotor.

In order to observe a phase change to the α -AlH₃ phase from the starting γ -AlH₃ phase during room temperature decomposition, spinning sidebands were carefully examined because the centerband of ²⁷Al resonance cannot distinguish α -AlH₃ from the γ -I site as shown in Fig. 2(a). The 2nd and 3rd spinning sidebands (200–400 ppm) of two spectra in Fig. 2(a) are separately displayed in Fig. 2(c) to show the growth of peaks marked by arrows after 192 h at room temperature. Their positions are precisely matched with sideband positions of the α -AlH₃ spectrum shown in Fig. 2(c) (broken line). This result clearly indicates that the phase changes from the γ -AlH₃ to the α -AlH₃ takes places even at room temperature. The bottom spectrum of Fig. 2(c) was generated by subtracting the α -AlH₃ component from the spectrum of 192 h. The subtracted spectrum shows almost identical lineshapes to the top spectrum of 1 h as anticipated with an exception of the reduced intensity. Such phase transition can be easily visualized by NMR at high temperatures as shown in Fig. 2(d), where spinning sidebands manifold of the γ -AlH₃ is greatly reduced to form sidebands manifold of the α -AlH₃ phase at 373 K. Considering the stable nature of the α phase, results presented in Fig. 2 strongly support the view that direct decomposition of the γ -AlH₃ phase to form Al metal also takes place at room temperature. Finally, note that detail analyses of spectra in Fig. 2(a) revealed that the decomposition of the γ -AlH₃ led the formation of both α -AlH₃ and Al metal at about equal amount as plotted in Fig. 2(b).

5. Conclusions

Static and MAS NMR characterization was performed on various AlH₃ samples. ²⁷Al MAS NMR demonstrated high sensitivity in distinguishing local environments of aluminum nucleus depending on the type of connectivity of AlH₆ octahedra and their spatial arrangement. For example, NMR responded with well-resolved lines for corner-sharing and edge sharing AlH₆ octahedra in the γ -AlH₃ polymorph. Once characterized, NMR spectra were useful in the study of the decomposition kinetics and phase transitions taking place in these materials. The reaction rate at room temperature was obtained for unstable γ phase undergoing decomposition. The rate-limiting mechanism appears to be the nucleation and growth model with the dimensionality of one at room temperature. A phase transition to the α phase was also confirmed by analyzing spinning sideband patterns. NMR evidence for direct decomposition of the γ phase at room temperature was also obtained.

Acknowledgements

This research was partially performed at the Jet Propulsion Laboratory, which is operated by the California Institute of Technology under contract with the NASA. This work was partially supported by DOE through Award Number DE-AI-01-05EE11105. The NMR facility at Caltech was supported by the National Science Foundation (NSF) under Grant Number 9724240 and partially supported by the MRSEC Program of the NSF under Award Number DMR-0080065. This work was supported at BNL by the DOE under contract DEA-AC0298CH100886. Financial support received from the Office of Hydrogen, Fuel Cells and Infrastructure Technologies of US Department of Energy is gratefully acknowledged. We thank J.G. Kulleck (JPL) for his X-ray diffraction measurements and Dr. X. Tang from the United Technologies Research Center for providing the Russian made α -AlH₃ material labeled UTRC. Finally, the authors are very grateful to Drs. H. Brinks and V.A. Yartys for providing their detailed crystal structure results to us prior to publication.

References

- [1] J. Graetz, J.J. Reilly, J. Phys. Chem. B 109 (2005) 22181.
- [2] J. Graetz, J. Reilly, G. Sandrock, J. Johnson, W.M. Zhou, J. Wegrzyn, in: D. Chandra, J.J. Petrovic, R. Bautista, A. Imam (Eds.), Advanced Materials for Energy Conversion III, The Minerals, Metals, and Materials Society, Warrendale, PA, 2006, pp. 57–63.
- [3] J.P. Maehlen, V.A. Yartys, in: D. Chandra, J.J. Petrovic, R. Bautista, A. Imam (Eds.), Advanced Materials for Energy Conversion III, The Minerals, Metals, and Materials Society, Warrendale, PA, 2006, pp. 77–85.
- [4] V.P. Tarasov, Y.B. Muravlev, S.I. Bakum, A.V. Novikov, Doklady Phys. Chem. 393 (2003) 353–356.
- [5] J. Graetz, J.J. Reilly, J. Alloys Compd. 424 (2006) 262.

- [6] G. Sandrock, J. Reilly, J. Graetz, W. Zhou, J. Johnson, J. Wegrzyn, Appl. Phys. A 80 (2005) 687.
- [7] G. Sandrock, J. Reilly, J. Graetz, W. Zhou, J. Johnson, J. Wegrzyn, J. Alloys Compd. 142 (2006) 185–189.
- [8] S.-J. Hwang, R.C. Bowman, J. Graetz, J.J. Reilly, in: J.C.F. Wang, W. Tumas, A. Rougier, M.J. Heben, E. Akiba (Eds.), Hydrogen Storage Materials, Mater. Res. Soc. Symp. Proc., vol. 927E, Warrendale, PA, 2006, pp. 0927-EE03-03.
- [9] H.W. Brinks, W. Langley, C.M. Jensen, J. Graetz, J.J. Reily, B.C. Hauback, J. Alloys Compd. 433 (2007) 180.
- [10] H.W. Brinks, W. Langley, C.M. Jensen, J. Graetz, J.J. Reily, B.C. Hauback, unpublished.
- [11] H.W. Brinks, A. Istad-Lem, B.C. Hauback, J. Phys. Chem. 110 (2006) 25833.
- [12] V.A. Yartys, R.V. Denys, J.P. Maehlen, C.h. Frommen, M. Fichtner, B.M. Bulychev, H. Emerich, Inorg. Chem. 46 (2007) 1051.
- [13] F.M. Brower, N.E. Matzek, P.F. Reigler, H.W. Rinn, C.B. Roberts, D.L. Schmidt, J.A. Snover, K. Terada, J. Am. Chem. Soc. 98 (1976) 2450.
- [14] J.W. Turley, H.W. Rinn, Inorg. Chem. 8 (1968) 18.
- [15] O.J. Zogal, B. Stalinski, S. Idziak, Z. Physk. Chem. N.F. 145 (1985) 167.
- [16] O.J. Zogal, M. Punkkinen, E.E. Ylinen, B. Stalinski, J. Phys.: Condens. Matter 2 (1990) (1941).

- [17] J.W. Wiench, V.P. Balema, V.K. Pecharsky, M. Pruski, J. Solid State Chem. 177 (2004) 648.
- [18] B. Bogdanović, M. Felderhoff, M. Germann, M. Härtel, A. Pommerin, F. Schuth, C. Weidenthaler, B. Zibrowius, J. Alloys Compd. 350 (2003) 246.
- [19] J.L. Herberg, R.S. Maxwell, E.H. Majzoub, J. Alloys Compd. 417 (2006) 39.
- [20] L. Frydman, J.S. Harwood, J. Am. Chem. Soc. 117 (1995) 5367.
- [21] J.P. Amoureus, M. Pruski, in: D.M. Grant, R.K. Harris (Eds.), Encyclopedia of NMR, 9, John Wiley & Sons, Chichester, 2002, pp. 226–251.
- [22] For all the α -AlH₃ phase studied in the present work, the formation of surface oxide layer was too slow to be detected by NMR.
- [23] A.E. Bennett, C.M. Rienstra, M. Auger, K.V. Lakshmi, R.G. Griffin, J. Chem. Phys. 103 (1995) 6951.
- [24] J.P. Amoureux, C. Fernandez, Solid State NMR 10 (1998) 211.
- [25] J.P. Amoureux, C. Fernandez, L. Carpentier, E. Cochon, Phys. Stat. Sol. (a) 132 (1992) 461.
- [26] C.H. Bamford, C.F.H. Tipper (Eds.), Comprehensive Chemical Kinetics, vol. 22, Elsevier, New York, 1980 (Chapter 3).
- [27] G.K. Lund, M.W. Lesley, S.R. Glaitli, Proceedings of the JANNF-32nd PEDCS Meeting, 2004, p. 1.